Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 927
Filtrar
1.
Food Funct ; 15(8): 4475-4489, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38563737

RESUMO

The objective of this study was to investigate the anti-obesity effects and underlying mechanism of Lacticaseibacillus rhamnosus HF01 fermented yogurt (HF01-Y). Herein, obesity was induced in mice through a high-fat diet and the changes in the gut microbiota were evaluated using 16S rRNA gene sequencing, combined with the expression levels of the liver AMPK signaling pathway to analyze the potential relationship between HF01-Y-mediated gut microbiota and obesity. The results showed that supplementation with HF01-Y improved obesity-related phenotypes in mice, including reduced body weight, improved serum lipid profiles, and decreased hepatic lipid droplet formation. In addition, HF01-Y altered the composition of the gut microbiota in obese mice, significantly upregulated norank_f__Muribaculaceae, unclassified_c__Clostridia, Blautia, unclassified_o__Bacteroidales, and Rikenellaceae_RC9_gut_group, while downregulating unclassified_f__Desulfovibrionaceae, Colidextribacter, and unclassified_f__Oscillospiraceae. These alterations led to an increase of the cecum butyric acid content, which in turn indirectly promoted the activation of the AMPK signaling pathway, subsequently, inhibited fat synthesis, and promoted fatty acid oxidation related gene expression. Therefore, HF01-Y was likely to alleviate hepatic fat and relieve obesity by modulating the gut microbiota-butyric acid-hepatic lipid metabolism axis, ultimately promoting host health.


Assuntos
Ácido Butírico , Dieta Hiperlipídica , Microbioma Gastrointestinal , Lacticaseibacillus rhamnosus , Metabolismo dos Lipídeos , Camundongos Endogâmicos C57BL , Obesidade , Iogurte , Microbioma Gastrointestinal/efeitos dos fármacos , Animais , Dieta Hiperlipídica/efeitos adversos , Camundongos , Masculino , Metabolismo dos Lipídeos/efeitos dos fármacos , Iogurte/microbiologia , Obesidade/metabolismo , Obesidade/dietoterapia , Obesidade/microbiologia , Ácido Butírico/metabolismo , Fígado/metabolismo , Fígado Gorduroso/metabolismo , Fermentação , Humanos , Probióticos/farmacologia
2.
Ultrason Sonochem ; 105: 106857, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552299

RESUMO

This work investigated the effects of the combined use of thermosonication-preconditioned lactic acid bacteria (LAB) with the addition of ultrasound-assisted pineapple peel extracts (UU group) on the post-acidification potential, physicochemical and functional qualities of yogurt products, aimed at achieving prolonged preservation and enhancing functional attributes. Accordingly, the physical-chemical features, adhesion properties, and sensory profiles, acidification kinetics, the contents of major organic acids, and antioxidant activities of the differentially processed yogurts during refrigeration were characterized. Following a 14-day chilled storage process, UU group exhibited acidity levels of 0.5-2 oT lower than the control group and a higher lactose content of 0.07 mg/ml as well as unmodified adhesion potential, indicating that the proposed combination method efficiently inhibited post-acidification and delayed lactose metabolism without leading to significant impairment of the probiotic properties. The results of physicochemical analysis showed no significant changes in viscosity, hardness, and color of yogurt. Furthermore, the total phenolic content of UU-treated samples was 98 µg/mL, 1.78 times higher than that of the control, corresponding with the significantly lower IC50 values of DPPH and ABTS radical scavenging activities of the UU group than those of the control group. Observations by fluorescence inverted microscopy demonstrated the obvious adhesion phenomenon with no significant difference found among differentially prepared yogurts. The results of targeted metabolomics indicated the proposed combination strategy significantly modified the microbial metabolism, leading to the delayed utilization of lactose and the inhibited conversion into glucose during post-fermentation, as well as the decreased lactic acid production and a notable shift towards the formation of relatively weak acids such as succinic acid and citric acid. This study confirmed the feasibility of thermosonication-preconditioned LAB inocula, in combination with the use of natural active components from fruit processing byproducts, to alleviate post-acidification in yogurt and to enhance its antioxidant activities as well as simultaneously maintaining sensory features.


Assuntos
Ananas , Antioxidantes , Fermentação , Extratos Vegetais , Iogurte , Iogurte/microbiologia , Iogurte/análise , Ananas/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Antioxidantes/farmacologia , Sonicação , Temperatura , Concentração de Íons de Hidrogênio , Manipulação de Alimentos/métodos , Qualidade dos Alimentos
3.
Appl Environ Microbiol ; 90(3): e0193623, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38376234

RESUMO

In the context of sustainable diet, the development of soy-based yogurt fermented with lactic acid bacteria is an attractive alternative to dairy yogurts. To decipher the metabolism of Lactobacillus delbrueckii subsp. delbrueckii during soy juice (SJ) fermentation, the whole genome of the strain CIRM-BIA865 (Ld865) was sequenced and annotated. Then Ld865 was used to ferment SJ. Samples were analyzed throughout fermentation for their cell number, carbohydrate, organic acid, free amino acid, and volatile compound contents. Despite acidification, the number of Ld865 cells did not rise, and microscopic observations revealed the elongation of cells from 3.6 µm (inoculation) to 36.9 µm (end of fermentation). This elongation was observed in SJ but not in laboratory-rich medium MRS. Using transcriptomic analysis, we showed that the biosynthesis genes of peptidoglycan and membrane lipids were stably expressed, in line with the cell elongation observed, whereas no genes implicated in cell division were upregulated. Among the main sugars available in SJ (sucrose, raffinose, and stachyose), Ld865 only used sucrose. The transcriptomic analysis showed that Ld865 implemented the two transport systems that it contains to import sucrose: a PTS system and an ABC transporter. To fulfill its nitrogen needs, Ld865 probably first consumed the free amino acids of the SJ and then implemented different oligopeptide transporters and proteolytic/peptidase enzymes. In conclusion, this study showed that Ld865 enables fast acidification of SJ, despite the absence of cell division, leads to a product rich in free amino acids, and also leads to the production of aromatic compounds of interest. IMPORTANCE: To reduce the environmental and health concerns related to food, an alternative diet is recommended, containing 50% of plant-based proteins. Soy juice, which is protein rich, is a relevant alternative to animal milk, for the production of yogurt-like products. However, soy "beany" and "green" off-flavors limit the consumption of such products. The lactic acid bacteria (LAB) used for fermentation can help to improve the organoleptic properties of soy products. But metabolic data concerning LAB adapted to soy juice are lacking. The aim of this study was, thus, to decipher the metabolism of Lactobacillus delbrueckii subsp. delbrueckii during fermentation of a soy juice, based on a multidisciplinary approach. This result will contribute to give tracks for a relevant selection of starter. Indeed, the improvement of the organoleptic properties of these types of products could help to promote plant-based proteins in our diet.


Assuntos
Lactobacillales , Lactobacillus delbrueckii , Animais , Fermentação , Lactobacillus/metabolismo , Lactobacillales/metabolismo , Aminoácidos/metabolismo , Soja , Sacarose/metabolismo , Lactobacillus delbrueckii/genética , Iogurte/microbiologia
4.
Int J Biol Macromol ; 262(Pt 1): 130006, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38331067

RESUMO

The processing characteristics of yogurt are closely related to the composition and arrangement of exopolysaccharides (EPS) in lactic acid bacteria (LAB). To fully understand and develop the functional properties of EPS and to study the effect of EPS molecular weight on yogurt and its mechanism, the physicochemical properties of high molecular weight EPS-LH43, medium molecular weight EPS-LH13, and low molecular weight EPS-LH23, as well as the gel properties and protein conformation of yogurt, were determined and analyzed in this experiment. The results indicate that EPS-LH43 and EPS-LH13 are both composed of mannose, rhamnose, galacturonic acid, glucose, and galactose. EPS-LH23 is composed of mannose, galacturonic acid, glucose, and galactose. Their Number-average Molecular Weight is 5.21 × 106 Da, 2.39 × 106 Da and 3.76 × 105 Da, respectively. In addition, all three types of EPS have good thermal stability and can improve the stability of casein. In addition, the analysis of the texture, particle size, potential, water holding capacity, rheology, low field nuclear magnetic resonance, microstructure, and flavor characteristics of yogurt confirmed the relationship between the molecular weight of LAB EPS and the gel properties of yogurt. Fluorescence spectrophotometer and circular dichroism analysis indicate that the different molecular weights of LAB EPS have different effects on protein structure, which is an intrinsic factor leading to significant differences in the gel properties of the three types of fermented milk. These findings provide new references for enhancing the understanding of the structure-activity relationship of EPS and indicate that EPS-LH43 can be used to improve the gel properties of dairy products.


Assuntos
Ácidos Hexurônicos , Lactobacillus helveticus , Iogurte , Iogurte/microbiologia , Polissacarídeos Bacterianos/química , Peso Molecular , Galactose/análise , Manose , Glucose/análise , Fermentação
5.
Sci Rep ; 14(1): 3684, 2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355653

RESUMO

Vegetable drinks offer a convenient way to increase the daily intake of vegetables containing vitamins, antioxidants, and fiber. In this study, we discovered that mungbean milk serves as a carbohydrate source during fermentation using lactic acid bacteria (LAB) and enhances the nutritional value of vegetable yoghurt. Mungbean milk reduces pH while titratable acidity increases faster than soybean milk during fermentation. M0S, Soybean milk 100% with added sucrose exhibited the highest titratable acidity after 16 h of fermentation. The acetic acid content of all samples did not show significant changes during fermentation, but the lactic acid content increased. Proximate analysis showed no significant change during fermentation, regardless of the fermentation time and mixing ratio of mungbean to soybean milk. The sucrose content of samples except M0S decreased after 16 h of fermentation. Mungbean milk exhibited high antioxidant activity both before and after fermentation, while M0S showed the lowest antioxidant activity. The results of this study demonstrated the potential application of mungbean milk to improve fermented vegetable drinks using LAB functionally. Fermented mungbean milk yoghurt can be a valuable addition to a healthy and balanced diet for those who consume plant-based diets.


Assuntos
Antioxidantes , Lactobacillales , Animais , Antioxidantes/análise , Iogurte/microbiologia , Vitaminas/análise , Carboidratos/análise , Verduras , Leite/química , Sacarose/análise , Fermentação
6.
Food Res Int ; 178: 114000, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38309926

RESUMO

Lactosucrose (LS) is a known prebiotic that has gained recognition for its low caloric content and various health benefits. However, its potential in food applications remains largely unexplored. In this study the effects of adding LS to milk at concentrations (0 %, 2 %, 5 % and 8 % w/v) for yogurt production, and the relevant changes in yogurt texture, microbial composition and metabolomics were investigated. Our findings revealed that LS played a role in promoting the formation of a structured gel during fermentation, resulting in increased elasticity and viscosity while reducing fluidity. Additionally incorporating high doses of LS into yogurt led to reduced post-acidification, enhanced survival of starter bacteria, improved water retention capacity and overall texture throughout a refrigerated storage period of 21 days. Notably higher concentrations of LS (8 % w/v) exhibited effects on enhancing yogurt quality. Furthermore, untargeted metabolomics analysis using UPLC Q TOF MS/MS revealed 45 differentially expressed metabolites, including up-regulated L-arginine, L-proline and L-glutamic acid along with the down-regulated glutathione, L-tyrosine, L-phenylalanyl and L-proline. These differential metabolites were primarily associated with amino acid metabolism such as thiamine metabolism, nicotinic acid salt and nicotinamide metabolism, and pyrimidine metabolism. As a result, the inclusion of LS in yogurt had an impact on the production of various beneficial metabolites in yogurt, highlighting the importance of combining prebiotic LS with probiotics to obtain desired physiological benefits of yogurt.


Assuntos
Espectrometria de Massas em Tandem , Trissacarídeos , Iogurte , Iogurte/microbiologia , Concentração de Íons de Hidrogênio , Prolina
7.
Ann Fam Med ; 21(Suppl 3)2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38271203

RESUMO

Context: Probiotics are live microorganisms that, when administered in adequate amounts, confer a health benefit on the host. One of the most common indications for probiotic treatment is the prevention of antibiotic-associated diarrhea (AAD). Unfortunately, many probiotic products used for AAD are not supported by rigorous independent research, and often results in non-evidence-based usage. The overarching objective is to move research forward for the most well-studied Bifidobacterium strain. Objectives: The primary aim is to test the efficacy of high dose, BB-12-supplemented yogurt in preventing AAD, compared to yogurt without BB-12, in children receiving antibiotics. Other aims are to further assess the safety of yogurt supplemented with BB-12, and to carry out longitudinal community structure and gene expression analysis of fecal microbiota to evaluate the impact of high dose BB-12 in a pediatric population receiving antibiotics. The microbiota includes hundreds of species, and its disruption is hypothesized to be an important factor in the development of AAD. AIM 1: To test the efficacy of high dose, BB-12-supplemented yogurt in preventing AAD, compared to yogurt without BB-12, in children receiving antibiotics. Hypothesis: Children receiving antibiotics who receive the yogurt with BB-12 will demonstrate less diarrhea than those receiving a control yogurt without BB-12. This is a Phase II trial that requires additional safety evaluation of high dose BB-12. Hypotheses 3: Administration of antibiotics will alter the composition and gene expression profile of the gut microbiota in pediatric patients, and concomitant ingestion of BB-12 in yogurt will mitigate the antibiotic-induced disturbance in the gut microbiota, as identified using 16S rRNA and metatranscriptomic profiling. Study Design and Analysis: We will finish in the June 2023 a Phase II, randomized, doubleblinded controlled trial with allocation concealment. Setting: Capital Areal Primary Care Practice Based Research Network. Population Studied: 270 patients, ages 3-12 years, clinically diagnosed with a respiratory infection requiring 7-10 days of antibiotics. Interventions: The two arms are, BB-12-supplemented yogurt and non-supplemented control yogurt, in a 1:1 randomized allocation. Participants of all ages will be asked to consume the same dose, 100 ml, of product per day. The 100 ml serving of probiotic yogurt will deliver ≥1010 CFU of BB-12. The BB-12 probiotic was not be added.


Assuntos
Antibacterianos , Diarreia , Probióticos , Iogurte , Criança , Pré-Escolar , Humanos , Antibacterianos/efeitos adversos , Diarreia/induzido quimicamente , Diarreia/prevenção & controle , Fragaria , Probióticos/uso terapêutico , RNA Ribossômico 16S , Iogurte/microbiologia
8.
Int J Biol Macromol ; 260(Pt 1): 129480, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38237823

RESUMO

Exopolysaccharides (EPS) yield and added concentration of lactic acid bacteria can greatly affect the processing characteristics of fermented milk. In order to investigate the effects and mechanisms of EPS yield and added concentration on fermented milk, researchers extracted EPS from 50 strains of Lactobacillus helvedicus (L. helvedicus) and selected the two strains with the largest difference in EPS yield (L. helvedicus LH18 and L. helvetigus LH33) for subsequent experiments. The physicochemical properties of EPS-LH18 and EPS-LH33 were analyzed. The gel characteristics and protein conformation of fermented milk were studied by means of texture analyzer, rheometer, scanning electron microscopy, nuclear magnetic resonance machine, fluorescence spectrophotometer and circular dichroism. The results indicate that the monosaccharide compositions of EPS-LH18 and EPS-LH33 are the same and have good thermal stability. The texture and rheological properties of L. helveticus LH18 fermented milk are significantly superior to other fermented milk. The reason is that L. helveticus LH18 EPS has the highest yield, which leads to a denser gel structure, lower surface hydrophobicity and free sulfhydryl content of its fermented milk. According to circular dichroism analysis, ß- sheet and random coil are the internal factors leading to the difference in fermented milk gel. In addition, the fermented milk improved even more favorably as the concentration of the two EPS additions increased. As described above, L. helveticus LH18 has the potential to be an excellent yogurt starter, and both of the above EPS can be used as probiotic stabilizer alternatives for fermented dairy products.


Assuntos
Produtos Fermentados do Leite , Lactobacillus helveticus , Probióticos , Animais , Leite/química , Lactobacillus helveticus/metabolismo , Fermentação , Produtos Fermentados do Leite/microbiologia , Iogurte/microbiologia
9.
J Nutr ; 154(3): 866-874, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38219862

RESUMO

BACKGROUND: Bifidobacterium animalis ssp. lactis DN-173 010/CNCM I-2494 (B. animalis) is a probiotic strain commonly added to yogurt. Yogurt and honey are a popular culinary pairing. Honey improves bifidobacteria survival in vitro. However, probiotic survival in yogurt with honey during in vitro digestion has not been investigated. OBJECTIVES: The study aimed to evaluate the effects of different honey varietals and concentrations on B. animalis survivability in yogurt through in vitro digestion. METHODS: Yogurt with honey or control-treated samples underwent in vitro simulated oral, gastric, and intestinal digestion. B. animalis cells were enumerated on de Man Rogosa and Sharpe (MRS) medium followed by an overlay with a modified selective MRS medium; all underwent anaerobic incubation. B. animalis were enumerated predigestion and after oral, gastric, and intestinal digestion. There were 2 study phases: Phase 1 tested 4 honey varietals at 20% wt/wt per 170 g yogurt, and Phase 2 tested 7 dosages of clover honey (20, 14, 10, 9, 8, 6, and 4% wt/wt) per 170 g yogurt. RESULTS: Similar B. animalis counts were observed between all treatments after oral and gastric digestion (<1 Log colony forming units (CFU)/g probiotic reduction). Higher B. animalis survivability was observed in yogurt with clover honey after exposure to simulated intestinal fluids (∼3.5 Log CFU/g reduction; P < 0.05) compared to all control treatments (∼5.5 Log CFU/g reduction; P < 0.05). Yogurt with 10-20% wt/wt clover honey increased B. animalis survivability after simulated in vitro digestion (≤ ∼4.7 Log CFU/g survival; P < 0.05). CONCLUSIONS: Yogurt with added honey improves probiotic survivability during in vitro digestion. The effective dose of clover honey in yogurt was 10-20% wt/wt per serving (1-2 tablespoons per 170 g yogurt) for increased probiotic survivability during in vitro digestion.


Assuntos
Bifidobacterium animalis , Mel , Probióticos , Humanos , Iogurte/microbiologia , Bifidobacterium , Probióticos/uso terapêutico , Digestão
10.
J Sci Food Agric ; 104(4): 2252-2261, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37971866

RESUMO

BACKGROUND: Plant-based yogurts are suffering from the common problems, such as an unattractive color, stratified texture state and rough taste. Therefore, it is urgent to develop a novel processing method to improve the quality and extend the storage life of hempseed yogurt. In the present study, hempseed yogurt was microfluidized prior to fermentation. The effects of microfluidization on microstructure, particle size, mechanical properties, sensory acceptability, variations in pH and titratable acidity, lactic acid bacteria (LAB) counts, and stability of hempseed yogurt during 20 days of storage were investigated. RESULTS: Microfluidization contributed to the production of hempseed yogurt as a result of the better physicochemical properties compared to normal homogenization. Specifically, microfluidization reduced the particle size of hempseed yogurt with a uniform particle distribution, increased water holding capacity, and improved texture and rheological properties. These advancements resulted in higher sensory scores for the yogurt. Furthermore, during storage, microfluidization effectively inhibited the post-acidification process of hempseed yogurt, and increased LAB counts and storage stability. CONCLUSION: Microfluidization improved the physicochemical properties and storage stability of hempseed yogurt. Our findings support the application of microfluidization in hempseed yogurt and provide a new approach for enhancing the quality of plant-based alternatives that meet consumers' demands for high-quality food products. © 2023 Society of Chemical Industry.


Assuntos
Paladar , Iogurte , Iogurte/microbiologia , Fenômenos Químicos , Tamanho da Partícula
11.
Foodborne Pathog Dis ; 21(2): 134-136, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37917929

RESUMO

Interest in the "microbiota" of dairy products and studies on this subject is increasing day by day. In this study, homemade buffalo yogurt was collected from five different local producers in Amasra province, and their microbiota was evaluated by next-generation sequencing. Salmonella enterica was found in all yogurts (1.2-3.17%). Klebsiella pneumoniae was found to be 1.12% and 5.15% in two of the samples. Staphylococcus aureus was found to be 3.17% in only a single sample. The presence of these potentially pathogenic bacteria suggests that more attention should be paid to hygiene rules during homemade production, processing, and distribution of these products being offered for sale in public markets. These yogurt products can potentially carry risks of contamination and should be periodically checked by the relevant authorities.


Assuntos
Leite , Iogurte , Animais , Leite/microbiologia , Iogurte/análise , Iogurte/microbiologia , Búfalos , Microbiologia de Alimentos , Staphylococcus aureus
12.
J Dairy Sci ; 107(1): 123-140, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37641256

RESUMO

This study aimed to investigate the symbiosis between Streptococcus thermophilus CICC 6038 and Lactobacillus delbrueckii ssp. bulgaricus CICC 6047. In addition, the effect of their different inoculum ratios was determined, and comparison experiments of fermentation characteristics and storage stability of milk fermented by their monocultures and cocultures at optimal inoculum ratio were performed. We found the time to obtain pH 4.6 and ΔpH during storage varied among 6 inoculum ratios (1:1, 2:1, 10:1, 19:1, 50:1, 100:1). By the statistical model to evaluate the optimal ratio, the ratio of 19:1 was selected, which exhibited high acidification rate and low postacidification with pH values remaining between 4.2 and 4.4 after a 50-d storage. Among the 3 groups included in our analyses (i.e., the monocultures of S. thermophilus CICC 6038 [St] and Lb. bulgaricus CICC 6047 [Lb] and their cocultures [St+Lb] at 19:1), the coculture group showed higher acidification activity, improved rheological properties, richer typical volatile compounds, more desirable sensor quality after the fermentation process than the other 2 groups. However, the continuous accumulation of acetic acid during storage showed that acetic acid was more highly correlated with postacidification than d-lactic acid for the Lb group and St+Lb group. Our study emphasized the importance of selecting an appropriate bacterial consortium at the optimal inoculum ratio to achieve favorable fermentation performance and enhanced postacidification stability during storage.


Assuntos
Lactobacillus delbrueckii , Iogurte , Animais , Iogurte/microbiologia , Streptococcus thermophilus , Fermentação , Acetatos
13.
Tissue Barriers ; 12(1): 2184157, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36852963

RESUMO

Lactic acid bacteria (LAB) are commonly used probiotics that improve human health in various aspects. We previously reported that yogurt starter strains, Lactobacillus delbrueckii subsp. bulgaricus 2038 and Streptococcus thermophilus 1131, potentially enhance the intestinal epithelial barrier function by inducing the expression of antimicrobial peptides in the small intestine. However, their effects on physical barrier functions remain unknown. In this study, we found that both strains ameliorated the decreased trans-epithelial resistance and the increased permeability of fluorescein isothiocyanate-dextran induced by tumor necrosis factor (TNF)-α and interferon (IFN)-γ in Caco-2 cells. We also demonstrated that LAB prevented a decrease in the expression and disassembly of tight junctions (TJs) induced by TNF-α and IFN-γ. To assess the repair activity of TJs, a calcium switch assay was performed. Both strains were found to promote the reassembly of TJs, and their activity was canceled by the inhibitor of AMP-activated protein kinase (AMPK). Moreover, these strains showed increased AMPK phosphorylation. These observations suggest that the strains ameliorated physical barrier dysfunction via the activation of AMPK. The activities preventing barrier destruction induced by TNF-α and IFN-γ were strain-dependent. Several strains containing L. bulgaricus 2038 and S. thermophilus 1131 significantly suppressed the barrier impairment, and L. bulgaricus 2038 showed the strongest activity among them. Our findings suggest that the intake of L. bulgaricus 2038 and S. thermophilus 1131 is a potential strategy for the prevention and repair of leaky gut.


Assuntos
Proteínas Quinases Ativadas por AMP , Lactobacillus delbrueckii , Humanos , Proteínas Quinases Ativadas por AMP/metabolismo , Células CACO-2 , Iogurte/microbiologia , Fator de Necrose Tumoral alfa/metabolismo , Lactobacillus delbrueckii/metabolismo
14.
J Dairy Sci ; 107(5): 2760-2773, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38135047

RESUMO

This study aims to identify lactic acid bacteria (LAB) isolates possessing physiological characteristics suitable for use as probiotics in yogurt fermentation. Following acid and bile salt tolerance tests, Lactiplantibacillus plantarum (NUC08 and NUC101), Lacticaseibacillus rhamnosus (NUC55 and NUC201), and Lacticaseibacillus paracasei (NUC159, NUC216, and NUC351) were shortlisted based on intraspecies distribution for further evaluation. Their physiological probiotic properties, including transit tolerance, adhesion, autoaggregation, surface hydrophobicity, biofilm formation, and antibacterial activity, were assessed. Principal component analysis indicated that Lactiplantibacillus plantarum NUC08 was the preferred choice among the evaluated strains. Subsequent investigations revealed that co-culturing Lactiplantibacillus plantarum NUC08 with 2 yogurt starter strains resulted in a cooperative and synergistic effect, enhancing the growth of mixed strains and increasing their tolerance to simulated gastric and intestinal conditions. Additionally, when Vibrio harveyi bioluminescent reporter strain was used, the 3 cocultured strains cooperated to induce the activity of a quorum sensing (QS) molecule autoinducer-2 (AI-2), hinting a potential connection between phenotypic traits and QS in the cocultured strains. Importantly, LAB viable counts were significantly higher in yogurt co-fermented with Lactiplantibacillus plantarum NUC08, consistently throughout the storage period. In conclusion, the study demonstrates that the probiotic strain Lactiplantibacillus plantarum NUC08 can be employed in synergy with yogurt starter strains, affirming its potential for use in the development of functional fermented dairy products.


Assuntos
Produtos Fermentados do Leite , Lactobacillus plantarum , Probióticos , Animais , Iogurte/microbiologia , Lactobacillus plantarum/fisiologia , Lactobacillaceae
15.
Pak J Biol Sci ; 26(10): 529-533, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38110558

RESUMO

<b>Background and Objective:</b> Probiotic yogurt is beneficial for laying hens because it can improve the animal's hematological status which will improve livestock health, therefore it is hoped that probiotic yogurt can increase the production of laying hens. This research was conducted to determine the lactic acid levels and pH of probiotic yogurt, probiotic yogurt's effect on feed conversion ratio and total production of laying hens. <b>Materials and Methods:</b> The research was carried out using experimental methods using a Completely Randomized Design (CRD) with 5 treatments and 8 replications so the total sample was 40. The treatment consisted of P0: Basal ration; P1: Basal diet+2% probiotic powder B1 (<i>Bifidobacterium</i> spp. and <i>L. acidophilus</i>), P2: Basal ration+3% probiotic powder B1, P3: Basal diet+2% probiotic powder B2 (<i>L. bulgaricus</i>, <i>S. thermophilus</i>, <i>L. acidophilus</i> and <i>B. bifidum</i>) and P4: Basal ration+3% probiotic powder B2. The data were analyzed using Analysis of Variance (ANOVA) and followed by Duncan's Multiple Range Test. <b>Results:</b> Lactic acid content in probiotic yogurts B1 is 0.945% and B2 is 0.638%. Based on the results of statistical analysis using the variance test, show that giving probiotic powder to laying hens has a significant effect on the feed conversion ratio and has no significant effect on the production of laying hens. <b>Conclusion:</b> Based on the results of statistical analysis using the variance test, it shows that giving probiotic powder to laying hens has no significant effect on the production of laying hens during the peak period.


Assuntos
Suplementos Nutricionais , Probióticos , Animais , Feminino , Iogurte/microbiologia , Galinhas , Pós , Ração Animal/análise , Dieta , Concentração de Íons de Hidrogênio
16.
Nutrients ; 15(20)2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37892442

RESUMO

Yogurt is a traditional fermented food that is accepted worldwide for its high palatability and various health values. The milk protein contained in yogurt exhibits different physical and biological properties from those of non-fermented milk protein due to the fermentation and manufacturing processes. These differences are suggested to affect the time it takes to digest and absorb milk protein, which in turn will influence the blood levels of amino acids and/or hormones, such as insulin, and thereby, the rate of skeletal muscle protein synthesis via the activation of intracellular signaling, such as the mTORC1 pathway. In addition, based on the relationship between gut microbiota and skeletal muscle conditions, yogurt, including lactic acid bacteria and its metabolites, has been evaluated for its role as a protein source. However, the substantial value of yogurt as a protein source and the additional health benefits on skeletal muscle are not fully understood. The purpose of this review is to summarize the research to date on the digestion and absorption characteristics of yogurt protein, its effect on skeletal muscle, and the contribution of lactic acid bacterial fermentation to these effects.


Assuntos
Aminoácidos , Iogurte , Iogurte/microbiologia , Proteínas do Leite , Valor Nutritivo , Músculo Esquelético , Fermentação
17.
Sci Rep ; 13(1): 13026, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563274

RESUMO

Nutritional yeast-produced soy yogurt has grown in demand, because of its unique nutritional and health benefits. It has low cholesterol, no lactose, and high levels of protein, probiotic yeast, vitamins, and minerals. In this work, Soymilk (12.5%) was prepared and fermented to produce soy yogurt. Growth curves, probiotic characteristics of Saccharomyces boulardii CNCMI-745 and Lactobacillus plantarum KU985432 were determined. The nutritional value of both yogurts was evaluated, including viable cell count, protein, vitamin B-complex, sugars, phenolic acids, and fatty acids, mineral content, stability, and storage. Analysis of the physicochemical composition of the yogurts included assessment of titratable acidity, antioxidant potential, viscosity, and moisture content. The probiotic viable count of the produced yogurts met the standards for commercial yogurts. S. boulardii CNCMI-745 displayed safety characteristics and high tolerance to heat, acid, and alkaline stress. The produced B vitamins increased in both yogurts. The total saturated fatty acids in Saccharomyces-yogurt decreased, while the unsaturated fatty acids increased. Saccharomyces-yogurt showed high antioxidant activity, phenolic acids, and crude protein content. Both yogurts demonstrated the same tendency for stability during 16 day-storage. In conclusion, using nutritional yeast in the production of soy yogurt increased its nutritional content more than probiotic lactic acid bacteria.


Assuntos
Lactobacillus plantarum , Probióticos , Saccharomyces boulardii , Saccharomyces , Leite de Soja , Lactobacillus plantarum/metabolismo , Iogurte/microbiologia , Probióticos/metabolismo , Leite de Soja/química , Saccharomyces cerevisiae , Antioxidantes/metabolismo , Minerais/metabolismo
18.
Biotechnol Bioeng ; 120(8): 2186-2198, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37428554

RESUMO

Genome-scale metabolic models and flux balance analysis (FBA) have been extensively used for modeling and designing bacterial fermentation. However, FBA-based metabolic models that accurately simulate the dynamics of coculture are still rare, especially for lactic acid bacteria used in yogurt fermentation. To investigate metabolic interactions in yogurt starter culture of Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus, this study built a dynamic metagenome-scale metabolic model which integrated constrained proteome allocation. The accuracy of the model was evaluated by comparing predicted bacterial growth, consumption of lactose and production of lactic acid with reference experimental data. The model was then used to predict the impact of different initial bacterial inoculation ratios on acidification. The dynamic simulation demonstrated the mutual dependence of S. thermophilus and L. d. bulgaricus during the yogurt fermentation process. As the first dynamic metabolic model of the yogurt bacterial community, it provided a foundation for the computer-aided process design and control of the production of fermented dairy products.


Assuntos
Lactobacillales , Lactobacillus delbrueckii , Iogurte/microbiologia , Metagenoma , Lactobacillus delbrueckii/genética , Fermentação
19.
Food Funct ; 14(11): 5264-5276, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37194317

RESUMO

Fermented dairy food, such as yogurt, exhibits some beneficial effects on consumers, including alleviating constipation. In this study, Lactobacillus delbrueckii subsp. bulgaricus DPUL-36, Lactobacillus paracasei DPUL-40 and Lactobacillus paracasei DPUL-44 were used as combined starter cultures at a bacterial cell ratio of 1 : 1 : 1 for reconstituted skim milk fermentation. The milk fermented with the combined starter culture showed good sensory properties. During the storage period, the yogurt showed high lactic acid bacteria vitality and quality stability. Constipated BALB/c mice induced by loperamide (Lop) were orally administered with the combined starter culture fermented milk for 14 days. The results clearly showed that oral administration of the fermented milk relieved Lop-induced constipation in the mice, as evidenced by the significantly increased fecal water content, reduced first black stool time, improved gastrointestinal transmission rate, recovered colon tissue damage, increased level of excitatory neurotransmitters (motilin, gastrin, and substance P) and reduced level of inhibitory neurotransmitters (vasoactive intestinal peptide, somatostatin and endothelin-1) of the mice. Compared with the mice in the Lop group, oral administration of the fermented milk significantly increased the concentrations of acetic acid, propionic acid, butyric acid, isovaleric acid and valeric acid in the feces of the mice, and furthermore, exerted a regulatory effect on the gut microbiota of the mice by up-regulating the abundance of Lactobacillus and Bacteroides, and decreasing the abundance of Helicobacter, Pseudomonas and Porphyromonas. Our results indicated that the combined starter culture fermented milk can effectively alleviate Lop-induced-constipation in BALB/c mice. The relationship between the nutrient profiles and the health promoting function of the yogurt should be further illustrated.


Assuntos
Constipação Intestinal , Lactobacillus , Iogurte , Animais , Camundongos , Masculino , Camundongos Endogâmicos BALB C , Fermentação , Constipação Intestinal/induzido quimicamente , Constipação Intestinal/dietoterapia , Loperamida/toxicidade , Iogurte/microbiologia , Microbioma Gastrointestinal
20.
J Food Sci ; 88(7): 2796-2806, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37243357

RESUMO

In this study, the commercial bacteria Danisco and Bifidobacterium lactis were used to ferment soy yogurt, and then the quality of yogurt and the number of active probiotics in yogurt during storage were investigated. The results showed that the total number of viable bacteria in soy yogurt increased first and then decreased, but all of them met the standard for the number of viable bacteria in probiotic foods. The content of protein, lipid, and total sugar in soy yogurt decreased gradually with the extension of storage time. The texture, water holding capacity, and rheological properties of soy yogurt were improved within 0-10 days, and there was no significant change after 15 days. However, brightness and whiteness of yogurt were significantly reduced. Based on realizing the reuse of soy whey, this study provided a theoretical basis for the research of the shelf life of soy yogurt. PRACTICAL APPLICATION: This study developed a soy yogurt with good quality and provided a theoretical basis for the study of the shelf life of soy yogurt. In addition, some technical support was provided for the reuse of soy whey.


Assuntos
Bifidobacterium animalis , Probióticos , Iogurte/microbiologia , Bactérias , Proteínas do Soro do Leite , Probióticos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...